-
如何解決在開(kāi)關(guān)模式電源中使用氮化鎵技術(shù)時(shí)面臨的挑戰(zhàn)?
在開(kāi)關(guān)模式電源(SMPS)中使用氮化鎵(GaN)技術(shù)時(shí),盡管其在高功率密度、高頻開(kāi)關(guān)和低功耗方面具有顯著優(yōu)勢(shì),但也面臨一系列技術(shù)挑戰(zhàn)。
2025-06-12
-
不同拓?fù)浣Y(jié)構(gòu)中使用氮化鎵技術(shù)時(shí)面臨的挑戰(zhàn)有何差異?
氮化鎵(GaN)器件因其高開(kāi)關(guān)頻率、低導(dǎo)通損耗的特性,正在快速滲透消費(fèi)電子、汽車(chē)電驅(qū)和數(shù)據(jù)中心等領(lǐng)域。然而,不同拓?fù)浣Y(jié)構(gòu)對(duì)GaN器件的需求呈現(xiàn)顯著差異:例如快充領(lǐng)域的LLC諧振拓?fù)湫枰哳l率下的電磁干擾控制,而車(chē)載雙向逆變器更關(guān)注動(dòng)態(tài)電阻與耐壓性能。本文將深入分析半橋拓?fù)?、雙向逆變拓?fù)洹⒍嚯娖酵負(fù)浼捌?chē)主驅(qū)模塊中的氮化鎵技術(shù)痛點(diǎn),揭示材料特性與系統(tǒng)設(shè)計(jì)間的矛盾性關(guān)系。
2025-06-12
-
集成化柵極驅(qū)動(dòng)IC對(duì)多電平拓?fù)潆妷壕獾钠平饴窂?/a>
在新能源汽車(chē)主驅(qū)模塊(如800V平臺(tái))中,多電平拓?fù)渫ㄟ^(guò)串聯(lián)開(kāi)關(guān)器件實(shí)現(xiàn)高壓階梯化處理,但分立式驅(qū)動(dòng)方案面臨兩大核心挑戰(zhàn)。
2025-06-12
-
多通道同步驅(qū)動(dòng)技術(shù)中的死區(qū)時(shí)間納米級(jí)調(diào)控是如何具體實(shí)現(xiàn)的?
在電力電子系統(tǒng)中,多通道同步驅(qū)動(dòng)的死區(qū)時(shí)間直接影響系統(tǒng)效率和安全性。傳統(tǒng)方案常面臨時(shí)序誤差累積(±10ns以上)、開(kāi)關(guān)損耗高(占系統(tǒng)總損耗15%-25%)和模式切換不靈活等痛點(diǎn)。納米級(jí)死區(qū)調(diào)控技術(shù)通過(guò)硬件架構(gòu)革新與智能算法協(xié)同,將控制精度提升至亞納秒級(jí),為新能源汽車(chē)、高頻電源等場(chǎng)景提供關(guān)鍵技術(shù)支撐。本文將深入解析其實(shí)現(xiàn)路徑與產(chǎn)業(yè)突破方向。
2025-06-12
-
高頻時(shí)代的電源革命:GaN技術(shù)如何顛覆傳統(tǒng)開(kāi)關(guān)電源架構(gòu)?
在電力電子系統(tǒng)對(duì)能效和功率密度要求日益嚴(yán)苛的背景下,氮化鎵(GaN)技術(shù)已成為推動(dòng)開(kāi)關(guān)模式電源(SMPS)發(fā)展的核心動(dòng)力。相較于傳統(tǒng)硅基器件,GaN憑借其3.4eV的寬禁帶特性、更高的電子遷移率(990-2000 cm2/V·s)及更低的導(dǎo)通電阻(RDS(ON)),可將開(kāi)關(guān)頻率提升至兆赫級(jí),同時(shí)減少30%以上的能量損耗。然而,其實(shí)際應(yīng)用中仍面臨驅(qū)動(dòng)設(shè)計(jì)、熱管理、電磁兼容性等挑戰(zhàn)。以半橋降壓轉(zhuǎn)換器為例,GaN開(kāi)關(guān)的柵極電壓耐受值更低(通常<6V),且快速切換(dV/dt達(dá)100V/ns)易引發(fā)寄生振蕩和電磁干擾(EMI),這對(duì)電路布局和驅(qū)動(dòng)控制提出了更高要求。
2025-06-11
-
車(chē)輛區(qū)域控制架構(gòu)關(guān)鍵技術(shù)——趨勢(shì)篇
向軟件定義汽車(chē) (SDV) 的轉(zhuǎn)型促使汽車(chē)制造商不斷創(chuàng)新,在區(qū)域控制器中集成受保護(hù)的半導(dǎo)體開(kāi)關(guān)。電子保險(xiǎn)絲和 SmartFET 可為負(fù)載、傳感器和執(zhí)行器提供保護(hù),從而提高功能安全性,更好地應(yīng)對(duì)功能故障情況。不同于傳統(tǒng)的域架構(gòu),區(qū)域控制架構(gòu)采用集中控制和計(jì)算的方式,將分散在各個(gè) ECU 上的軟件統(tǒng)一交由強(qiáng)大的中央計(jì)算機(jī)處理,從而為下游的電子控制和配電提供了更高的靈活性。
2025-06-05
-
如何通過(guò) LLC 串聯(lián)諧振轉(zhuǎn)換器優(yōu)化LLC-SRC設(shè)計(jì)?
十幾年來(lái),電源行業(yè)廣泛采用了圖 1 中所示的電感器-電感器-電容器 (LLC) 串聯(lián)諧振轉(zhuǎn)換器 (LLC-SRC) 作為低成本、高效率的隔離式功率級(jí),其中包含兩個(gè)諧振電感器(兩個(gè)“L”:Lm 和 Lr)和一個(gè)諧振電容器(一個(gè)“C”:Cr)。LLC-SRC 器件具有軟開(kāi)關(guān)特性,沒(méi)有復(fù)雜的控制方案。得益于軟開(kāi)關(guān)特性,該器件支持使用額定電壓較低的元件,并可提高效率。該器件采用簡(jiǎn)單的控制方案,即具有 50% 固定占空比的變頻調(diào)制方案,與相移全橋轉(zhuǎn)換器等用于其他軟開(kāi)關(guān)拓?fù)涞目刂破飨啾?,所需的控制器成本更低?/p>
2025-05-21
-
工程師必看!從驅(qū)動(dòng)到熱管理:MOSFET選型與應(yīng)用實(shí)戰(zhàn)手冊(cè)
MOSFET因其獨(dú)特的性能優(yōu)勢(shì),已成為模擬電路與數(shù)字電路中不可或缺的元件,廣泛應(yīng)用于消費(fèi)電子、工業(yè)設(shè)備、智能手機(jī)及便攜式數(shù)碼產(chǎn)品中。其核心優(yōu)勢(shì)體現(xiàn)在三個(gè)方面:驅(qū)動(dòng)電路設(shè)計(jì)簡(jiǎn)化,所需驅(qū)動(dòng)電流遠(yuǎn)低于BJT,可直接由CMOS或集電極開(kāi)路TTL電路驅(qū)動(dòng);開(kāi)關(guān)速度優(yōu)異,無(wú)電荷存儲(chǔ)效應(yīng),支持高速工作;熱穩(wěn)定性強(qiáng),無(wú)二次擊穿風(fēng)險(xiǎn),高溫環(huán)境下性能表現(xiàn)更穩(wěn)定。這些特性使MOSFET在需要高可靠性、高效率的場(chǎng)景中表現(xiàn)尤為突出。
2025-05-15
-
功率器件新突破!氮化鎵實(shí)現(xiàn)單片集成雙向開(kāi)關(guān)
氮化鎵(GaN)單片雙向開(kāi)關(guān)正重新定義功率器件的電流控制范式。 傳統(tǒng)功率器件(如MOSFET或IGBT)僅支持單向主動(dòng)導(dǎo)通,反向電流需依賴(lài)體二極管或外接抗并聯(lián)二極管實(shí)現(xiàn)第三象限傳導(dǎo)。這種被動(dòng)式反向?qū)ú粌H缺乏門(mén)極控制能力,更因二極管壓降導(dǎo)致效率損失。為實(shí)現(xiàn)雙向可控傳導(dǎo),工程師常采用背對(duì)背(B2B)拓?fù)浼?jí)聯(lián)兩個(gè)器件,卻因此犧牲了功率密度并增加了系統(tǒng)復(fù)雜度。
2025-05-11
-
雙脈沖測(cè)試系統(tǒng)如何確保晶體管性能可比較性
在電源轉(zhuǎn)換器設(shè)計(jì)中,為確保電源晶體管的性能評(píng)估準(zhǔn)確性,選擇合適的器件至關(guān)重要。理想情況下,功率半導(dǎo)體供應(yīng)商提供的數(shù)據(jù)表應(yīng)包含一致且可比較的動(dòng)態(tài)參數(shù)。然而,在實(shí)際操作中,尤其是針對(duì)表征寬帶gap(WBG)功率晶體管的動(dòng)態(tài)開(kāi)關(guān)特性測(cè)試,實(shí)現(xiàn)使寄生蟲(chóng)保持較小且從系統(tǒng)之間保持一致的挑戰(zhàn)。本文聚焦于設(shè)計(jì)一套標(biāo)準(zhǔn)化的雙脈沖測(cè)試(DPT)系統(tǒng),旨在實(shí)現(xiàn)不同測(cè)試系統(tǒng)間動(dòng)態(tài)特性結(jié)果的可關(guān)聯(lián)性。文中詳細(xì)闡述了在設(shè)計(jì)此類(lèi)系統(tǒng)時(shí)需考慮的關(guān)鍵因素,包括如何最小化寄生參數(shù)影響及確保系統(tǒng)間測(cè)試條件的一致性。
2025-05-10
-
能效升級(jí)新引擎!拆解IGBT的三大技術(shù)優(yōu)勢(shì)
在消費(fèi)電子市場(chǎng)高速發(fā)展的當(dāng)下,IGBT(絕緣柵雙極晶體管)已成為現(xiàn)代家電設(shè)備中不可或缺的核心器件。憑借其優(yōu)異的開(kāi)關(guān)特性、低導(dǎo)通損耗及出色的熱管理能力,IGBT技術(shù)正持續(xù)推動(dòng)家電產(chǎn)品能效升級(jí)。安世半導(dǎo)體推出的650 V G3 IGBT平臺(tái)產(chǎn)品,通過(guò)性能優(yōu)化與可靠性提升,為家電設(shè)備的高效化、節(jié)能化發(fā)展提供了關(guān)鍵解決方案。
2025-05-07
-
碳化硅能效革命核心突破點(diǎn):共源共柵(cascode)結(jié)構(gòu)詳解
安森美(onsemi)推出的碳化硅共源共柵場(chǎng)效應(yīng)晶體管(SiC JFET cascode)在硬開(kāi)關(guān)與軟開(kāi)關(guān)應(yīng)用場(chǎng)景中展現(xiàn)出顯著技術(shù)優(yōu)勢(shì)。其官方發(fā)布的《SiC JFET共源共柵應(yīng)用指南》系列文檔,通過(guò)三篇技術(shù)解析深入剖析器件特性,本文作為開(kāi)篇之作,將聚焦闡釋cascode結(jié)構(gòu)的核心機(jī)理。該指南不僅系統(tǒng)闡述共源共柵器件的拓?fù)浼軜?gòu),更對(duì)關(guān)鍵電參數(shù)、獨(dú)特性能優(yōu)勢(shì)及設(shè)計(jì)支持體系進(jìn)行全方位解讀,為功率半導(dǎo)體開(kāi)發(fā)者提供從基礎(chǔ)理論到實(shí)踐應(yīng)用的完整技術(shù)指引。
2025-04-08
- 挑戰(zhàn)極限溫度:高溫IC設(shè)計(jì)的環(huán)境溫度與結(jié)溫攻防戰(zhàn)
- 聚焦成渝雙城經(jīng)濟(jì)圈:西部電博會(huì)測(cè)試測(cè)量專(zhuān)區(qū)引領(lǐng)產(chǎn)業(yè)升級(jí)
- 專(zhuān)為STM32WL33而生:意法半導(dǎo)體集成芯片破解遠(yuǎn)距離無(wú)線(xiàn)通信難題
- 隔離式精密信號(hào)鏈定義、原理與應(yīng)用全景解析
- 隔離式精密信號(hào)鏈的功耗優(yōu)化:從器件選型到系統(tǒng)級(jí)策略
- GaN如何攻克精密信號(hào)鏈隔離難題?五大性能優(yōu)勢(shì)與典型場(chǎng)景全揭秘
- 模擬芯片原理、應(yīng)用場(chǎng)景及行業(yè)現(xiàn)狀全面解析
- 高功率鍍膜新突破!瑞典Ionautics HiPSTER 25電源首次運(yùn)行
- 安森美SiC Cascode技術(shù):共源共柵結(jié)構(gòu)深度解析
- 晶振如何起振:深入解析石英晶體的壓電效應(yīng)
- 精度?帶寬?抗噪!三大維度解鎖電壓放大器場(chǎng)景適配密碼
- 低排放革命!貿(mào)澤EIT系列聚焦可持續(xù)技術(shù)突破
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall