-
普通的5V電源電路,如何設(shè)計(jì)它的限流功能?
雖然這些78M05、LM2734以及ME2108型號的電源芯片設(shè)計(jì)方案,都能滿足5.0V的電壓輸出要求,但卻有一個(gè)功能無法提供,即無法控制電源的輸出電流大小,以達(dá)到限流的效果。
2020-02-24
5V電源電路 限流
-
SiC 在電動(dòng)車功率轉(zhuǎn)換中的應(yīng)用
電動(dòng)車 (EV) 的發(fā)貨量正在迅速增長,預(yù)計(jì) 21 世紀(jì) 20 年代還將加速發(fā)展。主要汽車制造商都已經(jīng)推出了電動(dòng)車或已制定了推出計(jì)劃,它們還積極與伙伴合作,研究最佳的動(dòng)力電子學(xué)方案,從而盡量延長單次充電行駛里程和降低成本。
2020-02-24
SiC 電動(dòng)車 功率轉(zhuǎn)換
-
電路設(shè)計(jì)中如何防止靜電放電?
我們的手都曾有過靜電放電(ESD)的體驗(yàn),即使只是從地毯上走過然后觸摸某些金屬部件也會(huì)在瞬間釋放積累起來的靜電。我們許多人都曾抱怨在實(shí)驗(yàn)室中使用導(dǎo)電毯、ESD靜電腕帶和其它要求來滿足工業(yè)ESD標(biāo)準(zhǔn)。我們中也有不少人曾經(jīng)因?yàn)榇中拇笠馐褂梦词鼙Wo(hù)的電路而損毀昂貴的電子元件。
2020-02-21
電路設(shè)計(jì) 靜電 放電
-
開關(guān)電源控制環(huán)路設(shè)計(jì),新手必看!
環(huán)路是一個(gè)相對復(fù)雜繁瑣的問題,設(shè)計(jì)只是讓初學(xué)者能找到一條途徑,不需要過多的經(jīng)驗(yàn)就能弄出一個(gè)還不錯(cuò)的環(huán)路,避免了初期的盲目嘗試和拼湊。當(dāng)然因?yàn)檫@個(gè)設(shè)計(jì)是停留在理論上的,一定要在實(shí)際的應(yīng)用環(huán)境電路中去驗(yàn)證,調(diào)試,修改,直至滿足電路指標(biāo)要求,避免紙上談兵。
2020-02-20
開關(guān)電源 控制環(huán)路
-
一文全面了解三極管
這里講解三極管的發(fā)明史、核心結(jié)構(gòu)、結(jié)構(gòu)示意圖、制造流程、結(jié)構(gòu)切面圖、工藝結(jié)構(gòu)特點(diǎn)、電路符號、電流控制原理示意圖、基本電路等,讓大家全面了解三極管。
2020-02-20
三極管
-
碳化硅MOS管圖文詳解
由SiC制作的MOSFET耐壓高,或者在同樣的耐壓要求下,MOSFET的尺寸就小,從而大大降低了MOS管的導(dǎo)通電阻和傳熱熱阻。使用SiC制作的MOSFET在近期在大功率、高電壓、高頻率應(yīng)用越來越廣泛。以下給大家以圖文的形式講解碳化硅MOS管長啥樣的?
2020-02-20
碳化硅 MOS管
-
圖文講解三相整流電路的原理及計(jì)算,工程師們表示秒懂!
單向整流電路應(yīng)用在負(fù)載功率需求較小的場合,一般不超過1KW。而在機(jī)電產(chǎn)品中,有很多設(shè)備需要較大功率的直流供電電壓,這就要采用三相整流電路。比如電弧焊機(jī),它使用直流電壓來實(shí)現(xiàn)金屬焊接,其輸出功率在幾千瓦~幾百千瓦,由于功率較大,一般采用三相整流電路來提供大功率直流電壓輸出。
2020-02-19
三相整流電路 電弧焊機(jī) 金屬焊接
-
功率MOSFET損壞模式及分析
本文結(jié)合功率MOSFET管失效分析圖片不同的形態(tài),論述了功率MOSFET管分別在過電流和過電壓條件下?lián)p壞的模式,并說明了產(chǎn)生這樣的損壞形態(tài)的原因,也分析了功率MOSFET管在關(guān)斷及開通過程中,發(fā)生失效形態(tài)的差別,從而為失效是在關(guān)斷還是在開通過程中發(fā)生損壞提供了判斷依據(jù)。
2020-02-18
功率MOSFET 過流 過壓 線性區(qū) 過電性應(yīng)力
-
詳解柔性電路板的焊接方法及注意事項(xiàng)
近些年,(FPC)成為印刷電路板行業(yè)增長最快的子行業(yè)之一。據(jù) IDTechEx 公司預(yù)測,到 2020 年,柔性電路板(FPC)的市場規(guī)模將增長到 262 億美元。柔性電路板如何?需要注意什么問題?本文告訴你答案。
2020-02-17
柔性電路板 焊接
- 如何解決在開關(guān)模式電源中使用氮化鎵技術(shù)時(shí)面臨的挑戰(zhàn)?
- 不同拓?fù)浣Y(jié)構(gòu)中使用氮化鎵技術(shù)時(shí)面臨的挑戰(zhàn)有何差異?
- 多通道同步驅(qū)動(dòng)技術(shù)中的死區(qū)時(shí)間納米級調(diào)控是如何具體實(shí)現(xiàn)的?
- 電壓放大器:定義、原理與技術(shù)應(yīng)用全景解析
- 減排新突破!意法半導(dǎo)體新加坡工廠冷卻系統(tǒng)升級,護(hù)航可持續(xù)發(fā)展
- 低排放革命!貿(mào)澤EIT系列聚焦可持續(xù)技術(shù)突破
- 雙核異構(gòu)+TSN+NPU三連擊!意法新款STM32MP23x重塑工業(yè)邊緣計(jì)算格局
- 聚焦智能聽力健康智能化,安森美北京聽力學(xué)大會(huì)展示創(chuàng)新解決方案
- 如何通過3D打印微型磁環(huán)來集成EMI抑制?
- 突破物理極限:儀表放大器集成度提升的四大技術(shù)路徑
- 儀表放大器的斬波穩(wěn)定技術(shù)原理
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall