-
通用運放與精密運放應(yīng)該如何選擇?
我們常用的是通用運算放大器如LM321用于電流檢測應(yīng)用。這是數(shù)十年來一直在使用的傳統(tǒng)運算放大器之一。這些傳統(tǒng)運算放大器成本低,用于無數(shù)應(yīng)用。然而,有時同樣的客戶又向我們反饋,說這些運算放大器在其電流檢測電路中出現(xiàn)故障。當我們查看退回的運算放大器單元時,它們按預期工作。那么問題出在哪...
2021-06-08
通用運放 精密運放
-
具有負反饋引腳和用于負輸出電源的高性能、單端控制器IC
安森美半導體,發(fā)布一對1200 V完整的碳化硅 (SiC) MOSFET 2-PACK模塊,進一步增強其用于充滿挑戰(zhàn)的電動車 (EV) 市場的產(chǎn)品系列。
2021-06-08
負反饋引腳 負輸出電源 控制器IC
-
小封裝、微功耗小微電池保護器SGM41100A
2016年秋季,Apple公司發(fā)布iPhone 7,宣布取消3.5mm耳機接口,并同步推出無線耳機AirPods。此舉措引爆了無線藍牙耳機和真無線藍牙耳機(TWS)市場。要為小巧的TWS耳機實現(xiàn)更長的待機和通話時間,需要降低功耗和增加電池容量(尺寸)。圣邦微電子SGM41100A系列小封裝、微功耗小微電池保護器應(yīng)運而生。
2021-06-07
電池保護器 SGM41100A
-
如何通過增益帶寬積選擇運放?
對于運放來說,它會有幾個關(guān)鍵參數(shù)會影響運放的性能:開環(huán)增益、共模抑制比、輸入失調(diào)電壓、輸入失調(diào)電流、輸入偏置電流、差模輸入電壓、3dB帶寬、壓擺率、單位增益帶寬或者增益帶寬積等。
2021-06-07
增益帶寬積 運放
-
FPDLINK的電火花干擾優(yōu)化
隨著汽車工業(yè)的不斷發(fā)展其電氣化程度越來越深,從而其各種前/后裝設(shè)備的電氣系統(tǒng)穩(wěn)定性對車輛安全而言也愈加重要。例如根據(jù)GB/T 19056-2012和JT-T794-2011標準,車載MDVR等產(chǎn)品就需強制通過電火花干擾測試以確保其穩(wěn)定可靠工作。
2021-06-04
FPDLINK 電火花 干擾優(yōu)化 汽車工業(yè)
-
優(yōu)化您的汽車USB電路防電池短路設(shè)計——第2部分
隨著C型USB連接器成為消費者領(lǐng)域的新標準,USB正在尋找汽車信息娛樂系統(tǒng)的更多解決方案。設(shè)計最高的可靠性時,車中處在不同位置的USB端口擴展帶來了獨特的挑戰(zhàn)。因為具有如防電池短路、短路和靜電放電(ESD)條件故障,汽車的USB應(yīng)用呈現(xiàn)其他市場未發(fā)現(xiàn)的使用案例。由于電源流經(jīng)主車輛電池,它們受...
2021-06-03
汽車 USB電路 電池短路 設(shè)計
-
汽車前端設(shè)計挑戰(zhàn)—對駕駛員的主動保護
你很有可能在啟動汽車時有著類似的經(jīng)歷,那就是只聽到咔噠聲,而不是發(fā)動機轉(zhuǎn)動的聲音。這是由電池沒電造成的,雖然電池沒電的原因會有很多,不過在大多數(shù)情況下,都是人為錯誤造成的(是不是車內(nèi)照明燈一宿沒關(guān)?)人為錯誤還會在用搭線的方式啟動汽車時發(fā)生。
2021-06-02
汽車 前端設(shè)計 駕駛員 保護
-
什么是功率放大器?詳解功放的類型、類別和應(yīng)用
功率放大器是一種電子放大器,旨在增加給定輸入信號的功率幅度。輸入信號的功率增加到足以驅(qū)動揚聲器、耳機、RF發(fā)射器等輸出設(shè)備負載的電平。與電壓/電流放大器不同,功率放大器被設(shè)計為直接驅(qū)動負載并用作最終模塊在放大鏈中。
2021-06-02
功率放大器 功放
-
玩轉(zhuǎn)LTspice丨生成LED驅(qū)動器的波德圖,你學會了沒?
閉環(huán)增益和相位圖是用于確定開關(guān)調(diào)節(jié)器控制環(huán)路穩(wěn)定性的常用工具。正確完成增益和相位測量需熟悉高級網(wǎng)絡(luò)分析儀。測量包括斷開控制環(huán)路、注入噪聲,以及測量一定頻率范圍內(nèi)的增益和相位(見圖1)。這種測量控制環(huán)路的做法很少應(yīng)用于LED驅(qū)動器。
2021-06-01
LTspice LED驅(qū)動器
- 挑戰(zhàn)極限溫度:高溫IC設(shè)計的環(huán)境溫度與結(jié)溫攻防戰(zhàn)
- 聚焦成渝雙城經(jīng)濟圈:西部電博會測試測量專區(qū)引領(lǐng)產(chǎn)業(yè)升級
- 專為STM32WL33而生:意法半導體集成芯片破解遠距離無線通信難題
- 隔離式精密信號鏈定義、原理與應(yīng)用全景解析
- 隔離式精密信號鏈的功耗優(yōu)化:從器件選型到系統(tǒng)級策略
- GaN如何攻克精密信號鏈隔離難題?五大性能優(yōu)勢與典型場景全揭秘
- 模擬芯片原理、應(yīng)用場景及行業(yè)現(xiàn)狀全面解析
- 高功率鍍膜新突破!瑞典Ionautics HiPSTER 25電源首次運行
- 安森美SiC Cascode技術(shù):共源共柵結(jié)構(gòu)深度解析
- 晶振如何起振:深入解析石英晶體的壓電效應(yīng)
- 精度?帶寬?抗噪!三大維度解鎖電壓放大器場景適配密碼
- 低排放革命!貿(mào)澤EIT系列聚焦可持續(xù)技術(shù)突破
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall